Absence of Solutions for Some Nonhomogeneous Elliptic Inequalities

نویسندگان

چکیده

By means of the modified method test functions, we obtain sufficient conditions absence nontrivial solutions for some classes semilinear elliptic inequalities higher order and quasilinear containing nonhomogeneous terms (independent unknown function).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nodal Solutions for a Nonhomogeneous Elliptic Equation with Symmetry

We consider the semilinear problem −∆u + λu = |u|p−2u + f(u) in Ω, u = 0 on ∂Ω where Ω ⊂ RN is a bounded smooth domain, 2 < p < 2∗ = 2N/(N − 2) and f(t) behaves like tp−1−ε at infinity. We show that if Ω is invariant by a nontrivial orthogonal involution then, for λ > 0 sufficiently large, the equivariant topology of Ω is related with the number of solutions which change sign exactly once. The ...

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Singular Solutions for some Semilinear Elliptic Equations

We are concerned with the behavior of u near x = O. There are two distinct cases: 1) When p >= N / ( N -2) and (N ~ 3) it has been shown by BR~ZIS & V~RON [9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). In other words, isolated singularities are removable. 2) When 1-< p < N / ( N 2) there are solutions of (1) with a singularity at x ---0. Moreover all singula...

متن کامل

Inequalities for Solutions to Some Nonlinear Equations

Let F be a nonlinear Fréchet differentiable map in a real Hilbert space. Condition sufficient for existence of a solution to the equation F (u) = 0 is given, and a method (dynamical systems method, DSM) to calculate the solution as the limit of the solution to a Cauchy problem is justified under suitable assumptions.

متن کامل

Local analytic solutions to some nonhomogeneous problems with p-Laplacian

Applying the Briot-Bouquet theorem we show that there exists an unique analytic solution to the equation ( tΦp (y ′) ) ′ +(−1)tΦq(y) = 0, on (0, a), where Φr(y) := |y| r−1 y, 0 < r, p, q ∈ R, i = 0, 1, 1 ≤ n ∈ N, a is a small positive real number. The initial conditions to be added to the equation are y(0) = A 6= 0, y′(0) = 0, for any real number A. We present a method how the solution can be e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2022

ISSN: ['1072-3374', '1573-8795']

DOI: https://doi.org/10.1007/s10958-022-06083-5